Evolución científica y tendencias del procesamiento digital de señales en el diagnóstico de fallas eléctricas: Un análisis bibliométrico (2019-2025)
DOI:
https://doi.org/10.62776/rse.v2i2.55Palabras clave:
Procesamiento Digital de Señales, diagnóstico de fallas eléctricas, bibliometría, Inteligencia artificialResumen
El Procesamiento Digital de Señales (DSP) ha cobrado creciente relevancia en el diagnóstico de fallas eléctricas, particularmente en un contexto de transformación digital de los sistemas eléctricos. En este marco, el presente estudio tiene como objetivo analizar los patrones y tendencias de la producción científica sobre DSP aplicado al diagnóstico de fallas entre 2019 y 2025, mediante un enfoque bibliométrico. Para ello, se analizaron 1,063 documentos recuperados de la base de datos Scopus utilizando herramientas como Bibliometrix (R-Studio) y VOSviewer. Se evidencio un crecimiento sostenido en la producción académica, articulado en tres etapas: ajuste, expansión y consolidación. Se identificó un núcleo reducido de autores altamente productivos (Lotka), así como un conjunto de revistas especializadas que concentran la diseminación temática (Bradford). China, India y Corea del Sur lideran en volumen de publicaciones, configurando una hegemonía investigativa asiática. Desde una perspectiva temática, se evidenció una convergencia metodológica hacia el uso de transformadas tiempo–frecuencias combinadas con inteligencia artificial, y un desarrollo semántico interdisciplinario anclado en ingeniería eléctrica, ciencias computacionales y energía. El estudio proporciona una visión integral de la evolución científica del campo, aportando insumos estratégicos para investigadores y tomadores de decisiones. Entre las limitaciones se encuentra el uso exclusivo de Scopus y el análisis centrado en metadatos. Se sugiere como línea futura la incorporación de análisis cualitativos y otras bases de datos.
Citas
Alim, A. A., Roslan, R., Nadzirah, S., Saidi, L. K., Menon, P. S., Aziah, I., Chang Fu, D., Sulaiman, S. A., Abdul Murad, N. A., & Hamzah, A. A. (2023). Geometrical Characterisation of TiO2-rGO Field-Effect Transistor as a Platform for Biosensing Applications. Micromachines, 14(9). Scopus. https://doi.org/10.3390/mi14091664
Aloteibi, S., & Sanderson, M. (2014). Analyzing geographic query reformulation: An exploratory study. Journal of the Association for Information Science and Technology, 65(1), 13-24. https://doi.org/10.1002/asi.22961
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Arias, R. M. (2024). Ensembled methodology for the comtrade analysis regarding medium voltage side in wind park. Results in Engineering, 23, 102751. https://doi.org/10.1016/j.rineng.2024.102751
Bradford, S. (1934). Sources of Information on Scientific Subjects. Engineering An Illustrated Weekly Journal. 1934, 1(137), 85-86.
Cheng, X., Liu, Z., Xu, H., Jiang, D., & Qu, R. (2024). A Data-Driven Fault Diagnosis Method for Motor-Drive Inverters with Different Control Strategies. 419-424. Scopus. https://doi.org/10.1109/ISESC63657.2024.10785391
Galbusera, L. (2023). Future Energy System Analyses. En Handbook of Smart Energy Systems (pp. 2303-2328). Springer, Cham. https://doi.org/10.1007/978-3-030-97940-9_36
Hernández, I. D., Castellanos M, J. G., Gómez-León, A., Bermeo-Andrade, H. P., & Bautista, S. S. (2021). Mission-Oriented Innovation Policies: An Approach to Two Colombian Cases. En G. Ordóñez-Matamoros, L. A. Orozco, J. H. Sierra-González, I. Bortagaray, & J. García-Estévez (Eds.), Policy and Governance of Science, Technology, and Innovation: Social Inclusion and Sustainable Development in Latin América (pp. 35-54). Springer International Publishing. https://doi.org/10.1007/978-3-030-80832-7_3
Huang, T.-J., Ankolekar, A., Pacheco-Sanchez, A., & Puchades, I. (2023). Investigating the Device Performance Variation of a Buried Locally Gated Al/Al2O3 Graphene Field-Effect Transistor Process. Applied Sciences (Switzerland), 13(12). Scopus. https://doi.org/10.3390/app13127201
Khan, M. U., Abbas, Y., Abunahla, H., Rezeq, M., Alazzam, A., Alamoodi, N., & Mohammad, B. (2023). Biocompatible humidity sensor using paper cellulose fiber/GO matrix for human health and environment monitoring. Sensors and Actuators B: Chemical, 393. Scopus. https://doi.org/10.1016/j.snb.2023.134188
Kim, K. H., Seo, S. E., Park, S. J., Lee, C.-S., Jun, S., Kwak, J., Yoon, H., Song, H. S., & Kwon, O. S. (2024). N-Heterocyclic Carbene–Graphene Nanotransistor Based on Covalent Bond for Ultrastable Biosensors. Advanced Functional Materials, 34(21). Scopus. https://doi.org/10.1002/adfm.202310377
Kim, Y., & Lee, J. (2025). Analysis Techniques for Pulse Sequences in Medium and High Voltage DC and Battery Energy Storage Systems. Scopus. https://doi.org/10.1109/EIC63069.2025.11123292
Kumar, A. (2024). A novel framework for waste management in smart city transformation with industry 4.0 technologies. Research in Globalization, 9, 100234. https://doi.org/10.1016/j.resglo.2024.100234
Kumar, P., Prakash, A., Saraswat, A., Gupta, Y., & Sabhahit, J. N. (2025). A Compound of Deep-Learning and Feature Selection for Solar Power Forecasting Applications. IEEE Access, 13, 164742-164770. Scopus. https://doi.org/10.1109/ACCESS.2025.3610419
Li, H. (2023). Bearing Fault Diagnosis Method Based on Cyclostationary Correntropy Analysis. Jixie Kexue Yu Jishu/Mechanical Science and Technology for Aerospace Engineering, 42(7), 1103-1108. Scopus. https://doi.org/10.13433/j.cnki.1003-8728.20220004
Lin, F., Liu, J., Lu, H., Liu, X., Liu, Y., Hu, Z., Lyu, P., Zhang, Z., Martin, J., Guo, W., & Liu, Y. (2024). Evolution of Graphene Dirac Fermions in Electric Double-Layer Transistors with a Soft Barrier. Advanced Functional Materials, 34(34). Scopus. https://doi.org/10.1002/adfm.202400553
Liu, Z., Wang, F., Wang, X., Huang, J., Yue, Y., Dai, R., Li, K., Wang, Z., Yang, K., Chen, D., & Xin, G. (2024). Enhancing Thermal Management of Graphene Devices by Self-Assembled Monolayers. ACS Applied Materials and Interfaces, 16(47), 65165-65172. Scopus. https://doi.org/10.1021/acsami.4c14463
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317-323.
Mahapatra, R., Chaterjee, S., & Mukherjee, M. (2023). Graphene Sensors for Application in Defence and Healthcare Sector: Present Trends and Future Direction. Lect. Notes Electr. Eng., 976 LNEE, 183-196. Scopus. https://doi.org/10.1007/978-981-99-0412-9_16
Mohammed, S., Hakami, S. S., & Lee, K.-B. (2024). Improved Iterative Learning Control for Three-Level NPC Inverter-Fed PMSM Drives with DC-Link Balancing. IEEE Transactions on Industrial Informatics, 20(8), 10554-10564. Scopus. https://doi.org/10.1109/TII.2024.3393568
Mohapatra, S. S., Maharana, M. K., & Pradhan, A. (2024). Review Study on Recent Advancements in Islanding Detection and Diagnosis in Microgrids Using Signal Processing and Machine Learning Techniques. Electric Power Components and Systems. Scopus. https://doi.org/10.1080/15325008.2024.2350061
Pan, L., Wang, S., Wang, J., Xiao, M., & Tan, Z. (2022). Research on Central Air Conditioning Systems and an Intelligent Prediction Model of Building Energy Load. Energies, 15(24), 9295. https://doi.org/10.3390/en15249295
Patel, P. K., Agrawal, N., Raghuwanshi, A., & Nema, R. K. (2024). Power and Stability Optimization of High Performance SRAM Cell Using Jaya Algorithms for Low Power Drone. IEEE Int. Conf. Electr. Power Energy Syst., ICEPES. 2024 IEEE 3rd International Conference on Electrical Power and Energy Systems, ICEPES 2024. Scopus. https://doi.org/10.1109/ICEPES60647.2024.10653499
Rahman, N. A. A., May, Z., Jaffari, R., & Hanif, M. (2023). Failure Severity Prediction for Protective-Coating Disbondment via the Classification of Acoustic Emission Signals. Sensors, 23(15). Scopus. https://doi.org/10.3390/s23156833
Rai, A., Kim, J.-M., Kumar, A., & Balaji, P. S. (2025). Gear fault diagnosis based on bidimensional time-frequency information theoretic features and error-correcting output codes: A multi-class support vector machine. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 239(3), 552-567. Scopus. https://doi.org/10.1177/1748006X241254603
Singh, S. A., Kalam, M. A., Sayyed, M. B., Selvin, R., Hsu, H.-L., Shaikh, S. F., & More, P. S. (2024). A promising approach for highly sensitive LPG detection via synergistic effects of Fe nanoparticle modified graphene. Journal of Materials Science: Materials in Electronics, 35(20). Scopus. https://doi.org/10.1007/s10854-024-13139-6
Wang, C. (2024). Unveiling the Future: The Potential of Graphene Electronics. IET. Conf. Proc., 2024(19), 607-611. Scopus. https://doi.org/10.1049/icp.2024.4050
Wang, Z. (2025). Bearing Fault Diagnosis Method Based on Long Term, Continuous Wavelet Transform and Multi-Scale Bilinear Res2Net (L. Trajkovic, G. Zhang, X. Yu, C.-Y. Su, M. Paprzycki, & S. S. Agaian, Eds.; Vol. 74, pp. 1097-1111). IOS Press BV; Scopus. https://doi.org/10.3233/ATDE250694
Zhang, L., Wang, J., Xiao, Q., Luo, Y., Wang, Z., Wang, C., & Liu, J. (2025). A Bearing Fault Diagnosis Method with Implementation of Multiscale Time-Frequency Feature Fusion and Bidirectional Information Interaction. IEEE Sensors Journal, 25(13), 23740-23756. Scopus. https://doi.org/10.1109/JSEN.2025.3568401
Zhou, S. (2025). Underground Power Cable Condition Monitoring and Risk Assessment Based on Distributed Perception and Optical Fiber Sensing. 642-648. Scopus. https://doi.org/10.1109/NETPS65392.2025.11102123






